Mitochondrial ADP Sensitivity and Transport: New Insights Into Diet-Induced Mitochondrial Impairments

Share Button

Developmental Programming of Obesity and Diabetes in Mouse, Monkey, and Man in 2018: Where Are We Headed?

Childhood obesity and its comorbidities continue to accelerate across the globe. Two-thirds of pregnant women are obese/overweight, as are 20% of preschoolers. Gestational diabetes mellitus (GDM) is escalating, affecting up to 1 in 5 pregnant women. The field of developmental origins of health and disease has begun to move beyond associations to potential causal mechanisms for developmental programming. Evidence across species compellingly demonstrates that maternal obesity, diabetes, and Western-style diets create a long-lasting signature on multiple systems, including infant stem cells, the early immune system, and gut microbiota. Such exposures accelerate adipogenesis, disrupt mitochondrial metabolism, and impair energy sensing, affecting neurodevelopment, liver, pancreas, and skeletal muscle. Attempts to prevent developmental programming have met with very limited success. A challenging level of complexity is involved in how the host genome, metabolome, and microbiome throughout pregnancy and lactation increase the offspring’s risk of metabolic diseases across the life span. Considerable gaps in knowledge include the timing of exposure(s) and permanence or plasticity of the response, encompassing effects from both maternal and paternal dysmetabolism. Basic, translational, and human intervention studies targeting pathways that connect diet, microbiota, and metabolism in mothers with obesity/GDM and their infants are a critical unmet need and present new challenges for disease prevention in the next generation.

Share Button

Hepatic Insulin Clearance in Regulation of Systemic Insulin Concentrations–Role of Carbohydrate and Energy Availability

Hyperinsulinemia is the hallmark of insulin resistance in obesity, and the relative importance of insulin clearance, insulin resistance, and insulin hypersecretion has been widely debated. On the basis of recent experimental evidence, we summarize existing evidence to suggest hepatic insulin clearance as a major and immediate regulator of systemic insulin concentrations responding within days to altered dietary energy and, in particular, carbohydrate intake. Hepatic insulin clearance seems to be closely associated with opposite alterations in hepatic lipid content and glucose production, providing a potential mechanistic link to hepatic insulin sensitivity. The molecular regulation of insulin clearance in the liver is likely to involve changes in insulin binding and receptor internalization in response to the dietary alterations, the molecular mechanisms of which await further research.

Share Button

In This Issue of Diabetes

Share Button

Exosomes or Microvesicles, a Secreted Subcellular Organelle Contributing to Inflammation and Diabetes

Share Button